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Abstract

The decorrelation in the azimuthal angle between the most forward and the most
backward jets (Mueller–Navelet jets) is measured in data collected in pp collisions
with the CMS detector at the LHC at

√
s = 7 TeV. The measurement is presented in

the form of distributions of azimuthal-angle differences, ∆φ, between the Mueller–
Navelet jets, the average cosines of (π − ∆φ), 2(π − ∆φ), and 3(π − ∆φ), and ratios
of these cosines. The jets are required to have transverse momenta, pT, in excess of
35 GeV and rapidities, |y|, of less than 4.7. The results are presented as a function
of the rapidity separation, ∆y, between the Mueller–Navelet jets, reaching ∆y up to
9.4 for the first time. The results are compared to predictions of various Monte Carlo
event generators and to analytical predictions based on the DGLAP and BFKL parton
evolution schemes.
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1 Introduction
Quantum chromodynamics (QCD), the theory of strong interactions, has been successfully
tested in hard processes in high-energy particle collisions. Perturbative QCD calculations per-
formed within the framework of collinear factorisation using the Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi (DGLAP) parton evolution scheme [1–5] have been found to describe many
measurements well.

An appropriate tool for QCD studies are hadronic jets—collimated bunches of hadrons, which
are the visible manifestations of the energetic partons emerging from the underlying pro-
cesses. At leading order in the strong coupling αS, QCD predicts the production of two par-
tons back-to-back in the azimuthal plane and consequently—even after parton showering and
hadronisation—the appearance of two jets with a strong correlation in their azimuthal angle.
A deviation from the back-to-back configuration and a weakening of the correlation, namely a
decorrelation, occurs if higher-order processes are considered and more partons appear in the
final state.

At high centre-of-mass energies,
√

s → ∞, a kinematical domain can be reached where semi-
hard parton interactions with transverse momenta pT �

√
s/2 play a substantial role. This

asymptotic domain is more appropriately described by the Balitsky–Fadin–Kuraev–Lipatov
(BFKL) evolution equation [6–8] than by the DGLAP approach. In pp collisions, such a regime
can be experimentally approached by requiring two low-pT jets that are widely separated in
rapidity, y [9]—a scenario for which BFKL, in contrast to DGLAP, predicts a strong rise of the
inclusive dijet cross section with increasing rapidity separation. In a kinematic region where
semi-hard parton interactions are important, the azimuthal decorrelation will increase with in-
creasing ∆y = |y1 − y2| between the jets [10, 11], where y1 and y2 are rapidities of the most
forward and the most backward jets (Mueller-Navelet jets, MN) [9]. The large LHC centre-
of-mass energy, and the large pseudorapidity coverage of the detectors, allows multijet pro-
duction to be explored in a region of ∆y that was previously kinematically inaccessible. The
BFKL approach was derived in the infinite-energy limit using the leading-logarithm (LL) ap-
proximation. At finite energy, the BFKL approach can be significantly improved using the
next-to-leading-logarithm (NLL) approximation [12–15], which incorporates further elements
like energy-momentum conservation and correlations at small rapidities.

Earlier searches for BFKL signatures in hadron-hadron collisions using events with jets widely
separated in rapidity were made at the Tevatron by D0 [16, 17]. The D0 measurements of
azimuthal decorrelation were restricted to a pseudorapidity separation ∆η < 6, where η =
− log[tan(θ/2)] and θ is the polar angle relative to the beam direction. No significant indica-
tions of BFKL effects were found [16]. Studies [17] have revealed a strong dependence of the
dijet production cross section at large rapidity separation on the collision energy. At the LHC,
such measurements can be performed at much higher collision energies and with larger rapid-
ity separation between the jets, thus enhancing the possibility to observe BFKL signatures in
the data.

Both ATLAS [18] and CMS [19] have published measurements of dijet production in pp colli-
sions at 7 TeV as a function of the rapidity separation between the two jets, and these measure-
ments do not show evidence for BFKL signatures in events with jets with pT > 35 GeV. How-
ever, theoretical arguments support that azimuthal decorrelation observables have greater sen-
sitivity to BFKL effects [20]. Studies of jets with large rapidity separation require data collected
at low instantaneous luminosity to avoid contamination from jets produced in different over-
lapping pp collisions [19]. In this paper, observables connected to the azimuthal decorrelation
of MN dijets are presented that use a data sample corresponding to an integrated luminosity
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of ≈41 pb−1 collected during proton-proton running at
√

s = 7 TeV in the year 2010.

2 Physics motivation and Monte Carlo event generators
The normalised cross section as a function of the azimuthal-angle difference (∆φ) between MN
jets with pT > pTmin can be written as a Fourier series [10, 11]:

1
σ

dσ

d(∆φ)
(∆y, pTmin) =

1
2π

[
1 + 2

∞

∑
n=1

Cn(∆y, pTmin) cos(n(π − ∆φ))

]
. (1)

The Fourier coefficients Cn are equal to the average cosines of the decorrelation angle, (π−∆φ):
Cn(∆y, pTmin) = 〈cos(n(π−∆φ))〉, where ∆φ = φ1−φ2 is the difference between the azimuthal
angles φ1 and φ2 of the MN jets.

If there are only two jets in the final state, they have to be approximately back-to-back in the
azimuthal plane (∆φ = π) and the average cosines equal unity: 〈cos(n(π − ∆φ))〉 = 1. Due to
parton radiation, the (π− ∆φ) distribution has a non-zero width that is determined by Fourier
harmonics involving 〈cos(n(π − ∆φ))〉. In the BFKL approach, an increasing rapidity interval
between the MN jets leads to an increased number of emitted partons and thus to an increased
azimuthal decorrelation: 〈cos(n(π − ∆φ))〉 < 1. In the DGLAP picture within the LL approx-
imation, in contrast, the partons emitted between the MN jets have much lower pT than the
latter, and their emission does not depend on their rapidity separation. Hence, parton emis-
sions from the parton cascade can change the azimuth of the parent partons to a much lesser
extent than in the BFKL approach where the pT of mother and daughter partons can be very
similar. However, when the MN jets are not the jets with the highest pT, then even in the
DGLAP picture a significant decorrelation might be observed.

In this paper the average cosines of the azimuthal angle between MN jets, (π−∆φ), 2(π−∆φ),
and 3(π− ∆φ) (i.e. C1, C2, and C3) are measured as functions of the rapidity separation, ∆y, as
suggested in Refs. [10, 11, 20–24]. In addition, the ratios of the average cosines C2/C1 and C3/C2
are measured, as proposed in Refs. [20, 22–24]. To cover all available ∆y space, ∆φ distributions
are measured in three bins of rapidity separation: ∆y < 3.0, 3.0 < ∆y < 6.0, and 6.0 < ∆y <
9.4. The average cosines may be expressed explicitly using conformal symmetries of the BFKL
evolution equation [14], which are absent in the DGLAP evolution equation. Moreover, since
one expects a suppression of DGLAP contributions in the two ratios [22], they are particularly
sensitive to manifestations of BFKL effects. In addition, uncertainties related to the factorisation
and renormalisation scales are reduced in the ratios [25].

The measurements are performed with the CMS detector, using proton-proton collision data
recorded at

√
s = 7 TeV for jets with pT > 35 GeV and |y| < 4.7, allowing a rapidity separation

between the MN jets of up to ∆y = 9.4. The jets are reconstructed with the anti-kT algorithm [26,
27] with a distance parameter R = 0.5.

The measured jet observables, corrected to the stable-particle level (lifetime cτ > 1 cm), are
compared to predictions from various Monte Carlo (MC) event generators which extend the
DGLAP approach by including LL soft and collinear radiation in their parton-shower mod-
elling: PYTHIA 6 (version 6.422) [28] tune Z2 [29], HERWIG++ (version 2.5.1) tune UE-7000-EE-
3 [30], and PYTHIA 8 (version 8.145) [31] tune 4C [32]. In the mentioned generators, different
models are used for the simulation of multiparton interactions and hadronisation. The pa-
rameters of multiparton interactions in these tunes are adjusted to best describe LHC data.
The MC generator POWHEG [33–35]—using the CTEQ6M parton distribution function [36], and
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interfaced with PYTHIA 6 and 8—is used to investigate the sensitivity of the measured jet ob-
servables to the contribution of next-to-leading-order (NLO) terms. The measurements are also
compared to the DGLAP-based MC generator SHERPA 1.4 [37], which uses tree-level matrix el-
ements for 2→ 2+ n-jets (with n = 0, 1, 2 in this work) matched to LL parton showers. Finally,
data-theory comparisons are also performed using the analytical NLL BFKL predictions as ob-
tained in Ref. [38] at parton level, as well as with predictions obtained from the HEJ+ARIADNE

generator package (version 0.99b) [39]. The latter consists of HEJ version 1.3.2 [40], which is
based on LL BFKL matrix elements, and the hadronisation and parton-shower package of ARI-
ADNE 4.12 [41].

3 The CMS detector
The most relevant component of the CMS detector [42] for this analysis is the calorimeter sys-
tem, which covers the pseudorapidity range |η| < 5.0. The crystal electromagnetic calorimeter
(ECAL) and the brass/scintillator hadron calorimeter (HCAL) extend to |η| = 3.0. The HCAL
cells map to an array of ECAL crystals to form calorimeter towers projecting radially outwards
from the nominal interaction point. The pseudorapidity region 3.0 < |η| < 5.0 is covered by
the hadronic forward (HF) calorimeter, which consists of steel absorber wedges with embedded
radiation-hard quartz fibres, oriented parallel to the beam direction. The calorimeter towers in
the barrel region have a segmentation of ∆η × ∆φ = 0.087 × 0.087, becoming progressively
larger in the endcap and forward regions (∆η × ∆φ = 0.175× 0.175 at η ≈ 4.5).

The silicon tracker measures charged particles within the pseudorapidity range |η| < 2.5. It
consists of 1440 silicon pixel and 15 148 silicon strip detector modules and is, like ECAL and
HCAL, located in the 3.8 T field of the superconducting solenoid. It provides an impact pa-
rameter resolution of 50–175 µm [43], and thus, precise interaction vertex reconstruction using
charged particle tracks within its acceptance.

The CMS trigger system consists of a hardware level-1 trigger and a software high-level trigger.
Jets formed online by the trigger system use ECAL, HCAL, and HF inputs for energy clustering
and are not corrected for the jet energy response.

4 Event selection
Dijet events with a large rapidity separation are rare. Therefore, in addition to the standard
single-jet trigger that selects events containing at least one jet with raw pT > 15 GeV, a ded-
icated trigger for forward-backward dijets was implemented that selects events with two jets
in opposite hemispheres, each with |η| > 3.0 and jet raw pT > 15 GeV. In order to keep the
rate of the single-jet trigger within the allocated bandwidth, a prescale factor of≈103 was used,
and an effective integrated luminosity of ≈33 nb−1 is recorded with it. The forward-backward
trigger was operated with a moderate prescale factor of ≈8, recording an effective integrated
luminosity of ≈5 pb−1, resulting in the collection of a sample of large ∆y dijet events (∆y > 6),
100 times larger than that collected with the single-jet trigger alone.

The single-jet trigger efficiency is measured by means of a control sample selected with the
minimum-bias trigger, which maximises the data collection efficiency while maintaining a low
background level [44]. The single-jet trigger is measured to be 99.5% efficient for events con-
taining dijets with pT > 35 GeV and is used for the determination of the efficiency of the
forward-backward dijet trigger. The latter is measured to be 100% efficient for dijets with
pT > 35 GeV.
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Jets are reconstructed offline using the energy depositions in the calorimeter towers. In the
reconstruction process, the contribution from each tower is assigned a momentum. The mag-
nitude and the direction of the momentum are given by the energy measured in the tower and
the coordinates of the tower, respectively. The raw jet energy is obtained from the sum of the
tower energies, while the raw jet momentum is calculated from the vectorial sum of the tower
momenta. The raw jet energies are then corrected to establish a uniform relative response of
the calorimeter in η and a calibrated absolute response in pT [45]. The jet energy resolution
(JER) for calorimeter jets with pT ≈ 35 GeV is about 22% for |η| < 0.5 and about 10% for
4 < |η| < 4.5 [46]. The uncertainty on the jet energy calibration for jets with pT ≈ 35 GeV
depends on η and is ≈7–8% [45].

In order to reduce the sensitivity to overlapping pp collisions within a single bunch cross-
ing (so-called “pileup” events), only events with exactly one reconstructed pp primary vertex
within the luminous region are used for the measurement. This selection leads to about 30%
events lost, whereas without this selection the average number of pileup interactions over anal-
ysed data was ≈2.2 [47]. The primary vertex is required to be reconstructed within ±24 cm of
the nominal interaction point along the beamline [48].

Loose jet quality requirements [49] are applied to suppress the effect of calorimeter noise.
Events with at least two jets with pT > 35 GeV and |y| < 4.7 are selected, and only jets sat-
isfying these criteria are used for the analysis.

Mueller–Navelet jet pairs are constructed from jets passing the above criteria. The azimuthal-
angle difference ∆φ between the two jets is measured in the range 0 < ∆φ < π for three bins
of rapidity separation between the MN jets: ∆y < 3.0, 3.0 < ∆y < 6.0, and 6.0 < ∆y < 9.4,
normalised to unity integral. The average cosines C1, C2, and C3 are measured in bins of ∆y up
to 9.4. The cosine ratios C3/C2 and C2/C1 are calculated as ratios of average cosines for each
bin in ∆y.

5 Corrections for detector effects
The finite jet pT resolution results in jet pT values at the detector level that deviate from those
at stable-particle level. Due to the steep slope of the pT spectrum, jets with smaller pT may
migrate to higher pT and thus increase the number of jets in distributions at the detector level.
The finite jet η resolution and measurement offset lead to a finite ∆y resolution and offset, such
that dijets may migrate from one ∆y bin to another. Similarly, distributions in ∆φ are affected
by the finite φ resolution.

These effects are mitigated using corrections derived with a hybrid method. This method com-
prises both a multiplicative correction designed to compensate migrations in the jet pT space
and a full unfolding in the (∆y, ∆φ) space. The migration of jets into and out of the analysed
phase space leads to non-negligible background and to a limited jet detection efficiency. These
effects are corrected for with bin-wise multiplicative correction factors derived from MC sim-
ulations. These bin-wise multiplicative corrections take into account only diagonal elements
of the response matrix of the measurement. Inter-bin migrations in the ∆φ distributions are
unfolded with an iterative procedure [50] (that in contrast to a bin-wise multiplicative correc-
tions allows also non-diagonal elements to be considered) to each of the three analysed ∆y bins.
Probabilities for inter-bin migration were calculated for all ∆φ bins in all three ∆y ranges, and
they were found to always be less than 20%. The same unfolding procedure is applied to the 2-
dimensional (∆y, ∆φ) distributions for the calculation of 〈cos(n(π−∆φ))〉 at the stable-particle
level. The correction factors associated with the hybrid method were found to be 0.6–1.1 for
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the ∆φ distributions and 0.9–1.05 for 〈cos(n(π − ∆φ))〉.

The corrections are calculated from the simulated events generated with PYTHIA 6 (version
6.422, Z2 tune) and HERWIG++ (version 2.4.1, default tune). These events are passed through
the full CMS detector simulation based on GEANT 4 [51]. The averages of the corrected values
obtained using PYTHIA 6 and HERWIG++ are taken as the final, corrected values of the observ-
ables.

In Ref. [45] it was shown that the jet energy resolution (JER) for calorimeter jets in the simula-
tion is 6.5–14.9% better than the one found in data. To correct for this discrepancy, an additional
smearing was applied to detector-level jets in the MC simulation.

6 Experimental uncertainties
The systematic uncertainties of the measurement are evaluated in the following way:

– To calculate the effect of the jet energy scale (JES) uncertainty, the pT values of the jets are
varied by pT-dependent and η-dependent values [45]. Observables were then recalculated
twice—with the pT values varied up and down—and the difference between the results de-
fines the uncertainty of the observable associated with JES.

– The JER obtained in MC simulations differs from that observed in data [45] (as discussed at
the end of Section 5), while the uncertainty of the discrepancy varies between 7.6% and 23.7%,
depending on η. The impact of this uncertainty is assessed by varying, in the MC simulation,
the amount of pT smearing on detector-level jets. The difference between the results again
defines the uncertainty.

– The sensitivity of the measurement to pileup is investigated using collision data. In the anal-
ysis the number of primary vertices per event is required to be equal to 1. However, as the
primary vertex reconstruction is not 100% efficient, a residual dependence of observables on
pileup may be present. The available data are divided into two sets corresponding to different
instantaneous bunch luminosities. In one set, the average number of primary vertices was re-
stricted to be less than two, while in the other set more than two primary vertices in average
were required. The observables obtained from each set are compared, and no dependence on
the instantaneous bunch luminosity is found.

– The uncertainty of data correction to the stable-particle level (see Section 5) is determined
from PYTHIA 6 and HERWIG++. The difference between the corrections obtained with the two
different MC generators is taken as the systematic uncertainty for the model dependence, and
it never exceeds 6.4% together with the uncertainty due to limited MC statistics being added in
quadrature.

– In order to estimate the impact of the imprecise modelling of the angular resolution for jets in
the MC simulation, an extra smearing is applied to the difference between the jets’ azimuthal
separation at the detector level and at the stable-particle level. This difference is varied by
±10% [46], and the same procedure is performed for the η difference. The resulting change in
the measurements turns out to be negligible and is not included in the systematic uncertainty.

The total systematic uncertainty of the measurement is obtained by quadratically summing
the individual experimental uncertainties listed above. The individual contributions to the
total uncertainty are summarised in Table 1, together with the statistical uncertainties. The
ranges correspond to the variation of the uncertainty with ∆φ or with ∆y, and for asymmetric
uncertainties the upper and lower limits are shown.
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Table 1: Systematic and statistical uncertainties (%) of the observables measured in this work.

Observable JES JER Corrections Total systematic Statistical
∆φ(|∆y| < 3.0) +(2.3−13.7)

−(3.0−10.2)
+(0.1−10.6)
−(0.4−7.6) 0.1–2.0 +(2.3−17.4)

−(3.0−12.7) 0.3–5.1

∆φ(3.0 < |∆y| < 6.0) +(2.5−16.4)
−(2.9−10.8)

+(0.7−6.2)
−(0.8−3.4) 0.4–2.3 +(3.0−17.5)

−(3.1−11.3) 0.9–6.2

∆φ(6.0 < |∆y| < 9.4) +(2.1−31.5)
−(1.9−17.3)

+(5.8−17.4)
−(2.1−9.7) 0.4–4.5 +(6.8−32.6)

−(3.6−19.5) 5.3–22.0

C1 1.0–5.5 0.6–4.6 0.1–3.2 1.1–6.5 0.2–9.7
C2 1.8–16.9 1.0–4.0 0.1–4.9 2.3–17.4 0.5–17.7
C3 2.7–23.8 1.5–15.1 0.1–6.4 3.2–24.6 0.7–23.7

C2/C1 0.8–12.5 0.4–5.6 0.1–2.6 1.0–13.1 0.5–19.7
C3/C2 0.7–7.1 0.2–7.0 0.03–4.3 0.7–10.6 0.8–28.1

7 Results
The ∆φ distributions for MN dijets measured in the three rapidity intervals ∆y < 3.0, 3.0 <
∆y < 6.0, and 6.0 < ∆y < 9.4 are shown in the left panes of Fig. 1. On the right-hand side of
Fig. 1, the predictions are shown normalised to the data.

The systematic uncertainties are shown as a band around the data points. The measurement
shows a high level of back-to-back correlation in the ∆y < 3.0 bin (Fig. 1, top row), while
the ∆φ distributions become less peaked at ∆φ ≈ π when going to larger ∆y separation (Fig. 1,
centre and bottom rows). This demonstrates that higher-order corrections at larger ∆y manifest
themselves through additional hard-parton radiation.

In the central rapidity interval ∆y < 3.0 (Fig. 1, top row), the LL DGLAP-based MC generators
PYTHIA 6 and HERWIG++ describe the data well, showing some deviation only at low ∆φ val-
ues. The LL DGLAP-based MC generators PYTHIA 8 and SHERPA, with parton matrix elements
matched to LL DGLAP parton showers, exhibit significant deviations from the data beyond
the experimental uncertainties at intermediate and large ∆φ. At intermediate (3.0 < ∆y < 6.0)
and large (6.0 < ∆y < 9.4) rapidity separation, PYTHIA 6 and 8 show a significant deviation
at small ∆φ while the measurements are reasonably well described in the region ∆φ > 1.5.
On the contrary, HERWIG++ and SHERPA show deviations to the measurements in the medium
∆φ region, but are close to the data at very small ∆φ. The HEJ+ARIADNE package overesti-
mates the azimuthal decorrelation at small ∆φ at all ∆y, though there are a lack of MC data for
6.0 < ∆y < 9.4. In Fig. 1 (bottom row) the ∆φ distributions are also compared to analytical
NLL BFKL calculations at the parton level [38], and this comparison is summarised at the end
of Section 7, together with the discussion of the other measured observables.

The measured average cosines, 〈cos(n(π − ∆φ))〉, are less than unity at ∆y = 0, due to the
emission of jets with pT < 35 GeV. They decrease with increasing ∆y, as shown in Fig. 2,
indicating that the decorrelation of jets increases as the phase space opens up for emission of
additional jets with pT > 35 GeV. At large values of the rapidity separation (∆y & 8), additional
emissions are becoming kinematically suppressed due to energy-momentum conservation near
the phase space boundary (∆y ≈ 10), resulting in an increase of the average cosines towards
unity. In the bin 6 < ∆y < 7, a flattening of the average cosines is observed. Despite various
checks, no systematic effect could be shown to be responsible for this flattening.

In Fig. 2 (left) the measured average cosines are compared to the predictions obtained from
the LL parton shower MC generators PYTHIA 6, HERWIG++, and PYTHIA 8. Also shown are
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the predictions from the NLO POWHEG generator interfaced with the LL DGLAP generators
PYTHIA 6 and PYTHIA 8. In Fig. 2 (right) the measurements are compared to the MC generator
SHERPA, to the HEJ+ARIADNE package, and to analytical NLL BFKL calculations at the parton
level [38]. The comparisons (Fig. 2) with the various MC predictions can be summarised as
follows: PYTHIA 6 and PYTHIA 8 show a slightly stronger decorrelation for the average cosine
at large ∆y than observed in the data. For 〈cos(2(π − ∆φ))〉 and 〈cos(3(π − ∆φ))〉 PYTHIA 6
and PYTHIA 8 show a fair agreement with the data. HERWIG++ shows a satisfactory agreement
with the data on the average cosine. For 〈cos(2(π − ∆φ))〉 and 〈cos(3(π − ∆φ))〉 HERWIG++
begins to show a stronger decorrelation at large ∆y than observed in the data. The NLO gen-
erator POWHEG interfaced with the two LL DGLAP generators PYTHIA 6 and PYTHIA 8 does
not improve the agreement with the data obtained with the standalone LL DGLAP generators,
while SHERPA underestimates the azimuthal decorrelation at large ∆y for the measured aver-
age cosines. The HEJ+ARIADNE package overestimates the azimuthal decorrelation at large ∆y
for the measured average cosines.

As mentioned in Section 2, the ratios of cosines are expected to be more sensitive to BFKL
effects than the average cosines and ∆φ distributions because of a cancellation of DGLAP con-
tributions [22]. The measured ratios C2/C1 and C3/C2 as a function of ∆y are shown in Fig. 3.
PYTHIA 6 and PYTHIA 8 underestimate the azimuthal decorrelation for the average cosine ratio
C2/C1 at large ∆y but are consistent with the data for C3/C2 within the rather large experimen-
tal uncertainties. HERWIG++ overestimates the azimuthal decorrelation for the average cosine
ratios C2/C1 and C3/C2 at large ∆y. SHERPA underestimates the azimuthal decorrelation at
large ∆y for the average cosine ratio C2/C1 but is consistent with the data for C3/C2 within the
experimental uncertainties. The HEJ+ARIADNE package overestimates the azimuthal decorre-
lation at large ∆y for the average cosine ratios C2/C1 and C3/C2.

The analytical NLL BFKL calculations performed at the parton level [38] agree well with the
data for all measured observables within the experimental and theoretical uncertainties. The
predictions are based on a full NLL BFKL calculation [25, 52], which is improved by a gener-
alised optimal choice of the renormalisation scale [14, 53], and available for the ∆y range from
4.0 to 9.4.

The uncertainties on the NLL BFKL predictions in Fig. 1 (bottom row) and Fig. 2 (right) are
obtained by variation of the parameters of the NLL BFKL approximation (renormalisation and
factorisation scales). Thus, theoretical uncertainties on the NLL BFKL predictions in Fig. 3
(right) consist just of those due to missing higher-order corrections. The NLL BFKL calculation
performed by a different group of authors showed worse agreement with these data [54].

The measured data are also compared to predictions of the LL BFKL-motivated MC generator
CASCADE 2 [55] (not shown), which is based on the CCFM evolution equation [56], and which
shows an even stronger decorrelation than that predicted by the HEJ+ARIADNE package.

Multiparton interactions (MPI) are an additional source of azimuthal decorrelation since they
can produce additional jets not correlated with those from the primary interaction. By default,
MPI effects are included in the MC generators PYTHIA 6, PYTHIA 8 , HERWIG++, and SHERPA.
In order to study the influence of the MPI on the azimuthal decorrelation, the corresponding
options in the MC generators are used to disable the MPI modelling. The measurements are
then compared with the PYTHIA 8 and HERWIG++ predictions with and without MPI in Figs. 4
and 5, where it can be seen that the average cosines are not sensitive to the details of MPI
modelling in PYTHIA 8 and HERWIG++. Other generators show an even smaller spread of
predictions with and without MPI.
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Figure 1: Left: Distributions of the azimuthal-angle difference, ∆φ, between MN jets in the
rapidity intervals ∆y < 3.0 (top row), 3.0 < ∆y < 6.0 (centre row), and 6.0 < ∆y < 9.4 (bottom
row). Right: Ratios of predictions to the data in the corresponding rapidity intervals. The
data (points) are plotted with experimental statistical (systematic) uncertainties indicated by
the error bars (the shaded band), and compared to predictions from the LL DGLAP-based MC
generators PYTHIA 6, PYTHIA 8, HERWIG++, and SHERPA, and to the LL BFKL-motivated MC
generator HEJ with hadronisation performed with ARIADNE (solid line).
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Figure 2: Left: Average 〈cos(n(π − ∆φ))〉(n = 1, 2, 3) as a function of ∆y compared to LL
DGLAP MC generators. In addition, the predictions of the NLO generator POWHEG interfaced
with the LL DGLAP generators PYTHIA 6 and PYTHIA 8 are shown. Right: Comparison of
the data to the MC generator SHERPA with parton matrix elements matched to a LL DGLAP
parton shower, to the LL BFKL inspired generator HEJ with hadronisation by ARIADNE, and to
analytical NLL BFKL calculations at the parton level (4.0 < ∆y < 9.4).
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Figure 5: Measured ratios C2/C1 (left) and C3/C2 (right) compared to PYTHIA 8 with and with-
out MPI.

Another potential source of azimuthal decorrelation is the hadronisation of the produced par-
tons, which can potentially smear out their azimuthal angle. The size of this non-perturbative
effect is estimated by a comparison of observables at the parton and stable-particle levels, as
obtained with PYTHIA 6. The observed variations in the measured observables do not exceed
10%. It is found that, in general, the size of hadronisation and MPI effects does not signifi-
cantly exceed the experimental uncertainties, justifying a direct comparison of the analytical
NLL BFKL calculations [38] performed at the parton level with the measured observables.

It should be noted that all DGLAP MC generators used in this work incorporate colour-coherence
effects (colour dipoles, polar-angle ordering, etc.), which are rapidity-dependent parton radia-
tion effects that complement the DGLAP evolution. Taking these effects into account at small
∆y, where (αS ∆y)n terms are small (i.e. in the DGLAP domain), leads to an improvement of
data description, while at large ∆y they yield a worse description of the data. As a matter of
fact, different implementations of colour-coherence effects in the DGLAP MC generators result
in similar effects at small ∆y, but in quite different predictions for the large ∆y region for dijet
ratios [19] and for the azimuthal decorrelation observables presented here. A better theoretical
prediction might be obtained if these ∆y dependent contributions are replaced by the com-
plete BFKL calculation at large ∆y, where (αS ∆y)n terms are large and the BFKL approach is
expected to be more reliable.

8 Conclusions
The first measurement of the azimuthal decorrelation of the most-forward and backward jets in
the event (called Mueller–Navelet dijets), with rapidity separations up to ∆y = 9.4, is presented
for proton-proton collisions at

√
s = 7 TeV. The measured observables include azimuthal-angle

distributions, moments of the average cosines of the decorrelation angle, 〈cos(n(π− ∆φ))〉 for
n = 1, 2, 3, as well as ratios of the average cosines, as a function of the rapidity separation ∆y
between the MN jets.

The predictions of the DGLAP-based MC generator HERWIG++ 2.5, improved with leading-log
(LL) parton showers and colour-coherence effects, exhibit satisfactory agreement with the data
for all measured observables. Other MC generators of this type, such as PYTHIA 6 Z2, PYTHIA
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8 4C, and SHERPA 1.4, provide a less accurate description of all measurements.

The MC generator POWHEG, with NLO matrix elements interfaced with the LL parton shower
of PYTHIA 6 and PYTHIA 8, does not improve the overall agreement with the data compared to
the description provided by PYTHIA 6 and 8 alone.

The MC generator HEJ, based on LL BFKL matrix elements combined with ARIADNE for parton
shower and hadronisation, predicts a stronger decorrelation than observed in the data.

An analytical BFKL calculation at next-to-leading logarithmic (NLL) accuracy with an opti-
mised renormalisation scheme and scale, provides a satisfactory description of the data for the
measured jet observables at ∆y > 4.

The observed sensitivity to the implementation of the colour-coherence effects in the DGLAP
MC generators and the reasonable data-theory agreement shown by the NLL BFKL analyti-
cal calculations at large ∆y, may be considered as indications that the kinematical domain of
the present study lies in between the regions described by the DGLAP and BFKL approaches.
Possible manifestations of BFKL signatures are expected to be more pronounced at increasing
collision energies.
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G. Barbaglia, V. Ciullia ,b, C. Civininia, R. D’Alessandroa ,b, E. Focardia ,b, S. Gonzia ,b, V. Goria ,b,
P. Lenzia ,b, M. Meschinia, S. Paolettia, G. Sguazzonia, A. Tropianoa,b, L. Viliania,b

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera

INFN Sezione di Genova a, Università di Genova b, Genova, Italy
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14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Tbilisi State University, Tbilisi, Georgia
16: Also at University of Hamburg, Hamburg, Germany
17: Also at Brandenburg University of Technology, Cottbus, Germany
18: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
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